Rationale and objectives: To identify whether the radiomics features of computed tomography (CT) allowed for the preoperative discrimination of the invasiveness of lung adenocarcinomas manifesting as pure ground-glass nodules (pGGNs) and further to develop and compare different predictive models.
Materials and methods: We retrospectively included 187 lung adenocarcinomas presenting as pGGNs (66 preinvasive lesions and 121 invasive lesions), which were randomly divided into the training and test sets (8:2). Radiomics features were extracted from non-enhanced CT images. Clinical features, including patient's demographic characteristics, smoking status, and conventional CT features that reflect tumor's morphology and surrounding information were also collected. Intraclass correlation coefficient and ℓ2.1-norm minimization were used to identify influential feature subset which was then used to build three predictive models (clinical, radiomics, and clinical-radiomics models) with the gradient boosting regression tree classifier. The performances of the predictive models were evaluated using the area under the curve (AUC).
Results: Of the 1409 radiomics features and 27 clinical feature subtypes, 102 features were selected to construct the hybrid clinical-radiomics model, which achieved the best discriminative power (AUC = 0.934 and 0.929 in training and test set). The radiomics model showed comparable predictive performance (AUC = 0.911 and 0.901 in training and test set) compared to the clinical model (AUC = 0.911 and 0.894 in training and test set).
Conclusion: The radiomics model showed good predictive performance in discriminating invasive lesions from preinvasive lesions for lung adenocarcinomas presenting as pGGNs. Its performance can be further improved by adding clinical features.
Keywords: Adenocarcinoma; Computational biology; Lung neoplasms; Solitary pulmonary nodule; Tomography; X-ray computed.
Copyright © 2020 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.