Objectives: To assess functional expression of the P2Y2 nucleotide receptor (P2Y2R) in head and neck squamous cell carcinoma (HNSCC) cell lines and define its role in nucleotide-induced epidermal growth factor receptor (EGFR) transactivation. The use of anti-EGFR therapeutics to treat HNSCC is hindered by intrinsic and acquired drug resistance. Defining novel pathways that modulate EGFR signaling could identify additional targets to treat HNSCC.
Materials and methods: In human HNSCC cell lines CAL27 and FaDu and the mouse oral cancer cell line MOC2, P2Y2R contributions to extracellular nucleotide-induced changes in intracellular free Ca2+ concentration and EGFR and extracellular signal-regulated kinase (ERK1/2) phosphorylation were determined using the ratiometric Ca2+ indicator fura-2 and immunoblot analysis, respectively. Genetic knockout of P2Y2Rs using CRISPR technology or pharmacological inhibition with P2Y2R-selective antagonist AR-C118925 defined P2Y2R contributions to in vivo tumor growth.
Results: P2Y2R agonists UTP and ATP increased intracellular Ca2+ levels and ERK1/2 and EGFR phosphorylation in CAL27 and FaDu cells, responses that were inhibited by AR-C118925 or P2Y2R knockout. P2Y2R-mediated EGFR phosphorylation was also attenuated by inhibition of the adamalysin family of metalloproteases or Src family kinases. P2Y2R knockout reduced UTP-induced CAL27 cell proliferation in vitro and significantly reduced CAL27 and FaDu tumor xenograft volume in vivo. In a syngeneic mouse model of oral cancer, AR-C118925 administration reduced MOC2 tumor volume.
Conclusion: P2Y2Rs mediate HNSCC cell responses to extracellular nucleotides and genetic or pharmacological blockade of P2Y2R signaling attenuates tumor cell proliferation and tumorigenesis, suggesting that the P2Y2R represents a novel therapeutic target in HNSCC.
Keywords: Adenosine 5′-Triphosphate; Cetuximab; Epidermal Growth Factor Receptor; Head and Neck Squamous Cell Carcinoma; Purinergic P2Y(2) Receptor Antagonist; Purinergic P2Y(2) Receptors; Tumor Microenvironment.
Copyright © 2020 Elsevier Ltd. All rights reserved.