Bioactive Glass Nanoparticles for Tissue Regeneration

ACS Omega. 2020 May 29;5(22):12716-12726. doi: 10.1021/acsomega.0c00180. eCollection 2020 Jun 9.

Abstract

Sol-gel-derived bioactive glass nanoparticles have attracted special interest due to their potential as novel therapeutic and regenerative agents. Significant challenges are yet to be addressed. The fabrication of sol-gel-derived nanoparticles in binary and ternary systems with an actual composition that meets the nominal has to be achieved. This work addresses this challenge and delivers nanoparticles in a ternary system with tailored composition and particle size. It also studies how specific steps in the fabrication process can affect the incorporation of the metallic ions, nanoparticle size, and mesoporosity. Sol-gel-derived bioactive glass nanoparticles in the 62 SiO2-34.5 CaO-3.2 P2O5 (mol %) system have been fabricated and characterized for their structural, morphological, and elemental characteristics using Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy associated with elemental analysis, transmission electron microscopy, and solid-state nuclear magnetic resonance. The fabricated nanoparticles were additionally observed to form the apatite phase when immersed in simulated body fluid. This work highlights the effect of the different processing variables, such as the nature of the solvent, the order in which reagents are added, stirring time, and the concentrations in the catalytic solution on the controlled incorporation of specific ions (e.g., P and Ca) in the nanoparticle network and particle size.