Zeolite Y, with a high SiO2 /Al2 O3 ratio (SAR), plays an important role in fluidized catalytic cracking processes. However, in situ synthesis of zeolite Y with high SARs remains a challenge because of kinetic limitations. Here, zeolite Y with an SAR of 6.35 is synthesized by a hydroxyl radical assisted route. Density-functional theory (DFT) calculations suggest that hydroxyl radicals preferentially enhanced the formation of Si-O-Si bonds, thus leading to an increased SAR. To further increase the SAR, a dealumination process was carried out using citric acid, with a subsequent second-step hydrothermal crystallization, giving an SAR of up to 7.5 while maintaining good crystallinity and high product yield. The resultant zeolite Y shows good performance in cumene cracking. Introduced here is a new strategy for synthesizing high SAR zeolite Y, which is widely used in commercial applications.
Keywords: cracking; density-functional calculations; heterogeneous catalysis; radicals; zeolites.
© 2020 Wiley-VCH GmbH.