Background: Non-small cell lung cancer (NSCLC) remains a huge health burden for human health and life worldwide. Our study here was to illuminate the relevance of microRNA-130a-5p (miR-130a-5p) on growth and epithelial mesenchymal transition (EMT) in NSCLC cells along with metastasis in vivo, and to explore the underlying mechanism.
Methods: RT-qPCR was carried out for miR-130a-5p expression determination in NSCLC cells and tissue samples. Dual-luciferase reporter gene assay, RT-qPCR and western blot were carried out to study the potential targets of miR-130a-5p. Effects of miR-130a-5p, runt-related transcription factor 2 (RUNX2) and encoding serine/threonine kinase 32A (STK32A) on NSCLC proliferation, migration, invasion as well as EMT processes were assessed by cell counting kits-8, colony formation, Transwell and western blot assays.
Results: miR-130a-5p was diminished in NSCLC tissues and cells versus their counterparts. miR-130a-5p exerted its repressive role in NSCLC by curtailing cell viability, migration, invasion as well as EMT, while facilitating apoptosis. miR-130a-5p directly targeted RUNX2, a transcription factor, and conversely regulated its expression. RUNX2 was found to interact with STK32A to promote its expression. Following the validation of the supporting role of STK32A in NSCLC cells and NF-κB p65 phosphorylation, RUNX2 overexpression was monitored to reverse miR-130a-5p-inhibited NSCLC tumor volume and weight through enhancing STK32A expression in vivo.
Conclusions: miR-130a-5p diminished the growth and EMT of NSCLC cells by regulating the RUNX2/STK32A/NF-κB p65 axis, offering possible targets for the treatment for NSCLC.
Keywords: Epithelial mesenchymal transition; Non-small cell lung cancer; RUNX2; STK32A; microRNA-130a-5p.