Introduction: Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron disease that leads to death after a median survival of 36 months. The development of an effective treatment has proven to be extremely difficult due to the inadequate understanding of the pathogenesis of ALS. Energy metabolism is thoroughly involved in the disease based on the discoveries of hypermetabolism, lipid/glucose metabolism, the tricarboxylic acid (TCA) cycle, and mitochondrial impairment.
Area covered: Many perturbed metabolites within these processes have been identified as promising therapeutic targets. However, the therapeutic strategies targeting these pathways have failed to produce clinically significant results. The authors present in this review the metabolic disturbances observed in ALS and the derived-therapeutics.
Expert opinion: The authors suggest that this is due to the insufficient knowledge of the relationship between the metabolic targets and the type of ALS of the patient, depending on genetic and environmental factors. We must improve our understanding of the pathological mechanisms and pay attention to the subtle hidden effects of changing diet, for example, and to use this strategy in addition to other drugs or to use metabolism status to determine subgroups of patients.
Keywords: ALS; TCA cycle; metabolic alteration; metabolic therapeutics; metabolism; metabolomics.