Water-soluble polymer based on alkylated chitosan with a quaternary ammonium group (Ch-QAG) was prepared, characterized, and applied to remove arsenate ions from aqueous solution by LPR technique. The arsenic removal was performed by the washing method (WM) and enrichment method (EM). Through the WM, studies of the pH and variation in the concentrations of interferents and arsenate ions were carried out. The effect of the removal of arsenate ions in simulated water was determined from the Camarones River in northern Chile. Ch-QAG showed high affinity for binding arsenate species (99% of removal) at pH 11.0 at a molar ratio of 20:1 polymer: As(V). High selectivity was also observed in the presence of interfering ions such as Cl-, SO42-, and PO43-, resulting in a removal rate over 80% at percentages over 95% for a concentration of 100 mg L-1 of As (V). The maximum retention capacity obtained was 112, 105, and 98 mg g-1 for three load cycles. The retention percentage for simulated water was 46.3% at a concentration of 1300 μ g L-1. In conclusion, the results presented in this study show that using Ch-QAG with ultrafiltration membranes is a great alternative to remove As (V) at high removal rates.
Keywords: Arsenic removal; Chitosan; Ultrafiltration membrane; Water -soluble polymer.
Copyright © 2020 Elsevier B.V. All rights reserved.