Background: Genetic variability is considered to confer susceptibility to amyotrophic lateral sclerosis (ALS). Oxidative stress is a significant contributor to ALS-related neurodegeneration, and it is regulated by cytochromes P450 (CYPs), such as CYP1A2; these are responsible for the oxidative metabolism of both exogenous and endogenous substrates in the brain, subsequently impacting ALS. The function of CYP1A2 is largely affected by genetic variability; however, the impact of CYP1A2 polymorphisms in ALS remains underinvestigated.
Objective: This study aims to examine the possible association of ALS with the CYP1A2 rs762551 polymorphism, which codes for the high inducibility form of the enzyme.
Methods: One hundred and fifty-five patients with sporadic ALS and 155 healthy controls were genotyped for the CYP1A2 rs762551. Statistical testing for the association of CYP1A2 rs762551 with risk for ALS was performed using SNPstats.
Results: The CYP1A2 rs762551 C allele was associated with a decreased risk of ALS development. In the subgroup analysis according to the ALS site of onset, an association between CYP1A2 rs762551 and limb and bulbar onset of ALS was shown. Cox proportional-hazard regression analyses revealed a significant effect of the CYP1A2 rs762551 on the age of onset of ALS.
Conclusions: Based on our results, a primarily potential link between the CYP1A2 rs762551 polymorphism and ALS risk could exist.
Keywords: ALS; CYP1A2; Oxidative stress; Polymorphism; rs762551.