Background: Oxidative stress could participate in the pathogenesis of Parkinson's disease (PD). However, the role of genetic variation of superoxide dismutase 2 (SOD2), an important regulator against oxidative stress, in PD remains to be elucidated.
Methods: We screened SOD2 gene variation by sequencing cDNA from 72 patients with early onset PD. A cohort of PD (n = 609) and ethnically matched controls (n = 681) were further examined for the identified sequence variant by PCR and NaeI restriction analysis.
Results: Only a reported c.47T>C polymorphism (rs4880, SOD2 p.V16A) was found by cDNA sequencing. Case-control study of c.47T>C revealed that genotype and allele frequencies were in Hardy-Weinberg equilibrium in both patients and healthy controls. In a recessive model, those with CC genotype had a 2.61-fold increased risk of PD (95% CI: 1.08-6.30, P = 0.03) compared to subjects with TT and TC genotypes. Significant association between CC genotype and PD in non-smokers was also observed after stratification according to the history of smoking (3.54-fold increased risk of PD, 95% CI: 1.17-10.72, P = 0.02). Meta-analysis by combining studies of Chinese in China, Singapore, and Taiwan (total 2302 cases and 2029 controls) consistently showed CC genotype with increased risk of PD (OR = 1.77, 95% CI: 1.15-2.71, P = 0.01).
Conclusion: Our findings demonstrate that SOD2 p.V16A may play a role in the susceptibility of PD in Han Chinese.
Keywords: Meta-analysis; Parkinson's disease; SOD2 p.V16A.
Copyright © 2020 Formosan Medical Association. Published by Elsevier B.V. All rights reserved.