Aim: Aberrantly expressed long non-coding RNAs (lncRNAs) are critical instigators of gastric cancer (GC) progression and metastasis. The ceRNA (competing endogenous RNAs) network is well-known in modulating tumor pathological and physiological processes. This research aims to determine the more effective molecular mechanisms of lncRNA PCGEM1 (prostate cancer gene expression marker 1).
Methods: Bioinformatics database and Ago2-RIP were performed to predict and verify the potential targets of lncRNA PCGEM1. Both gain- and loss-of-function experiments were carried out to dissect the biological functions of RNAs. Fluorescence in situ hybridization, dual-luciferase reporter assays, western blot, and real-time PCR (RT-PCR) experiments were utilized to determine the pathophysiological pathways of competitive endogenous RNAs (ceRNAs).
Results: GC cells expressed high levels of cytoplasmic PCGEM1. Loss-of-function experiments displayed that the silencing of PCGEM1 suppressed metastatic and invasive cell qualities. PCGEM1 was also found to have associations with miR-129-5p. Subsequently, luciferase reporter and RIP experiments, together with RT-PCR, verified that PCGEM1 functioned as a ceRNA of P4HA2 (Prolyl 4-Hydroxylase Subunit Alpha 2) via sponging miR-129-5p to up-regulate P4HA2 expression. Finally, the rescue assays determined that P4HA2 overexpression rescued the inhibited cell invasion and metastasis caused by PCGEM1 down-regulation.
Conclusion: These findings found that an over-expression of PCGEM1 in GC acts as a miR-129-5p sponge, leading to higher levels of P4HA2. The PCGEM1/miR-129-5p/P4HA2 axis was confirmed to possess a crucial role in GC metastasis and invasion, suggesting its utility as a potential diagnostic and therapeutic biomarker.
Keywords: Gastric cancer; P4HA2; PCGEM1; ceRNA; miR-129-5p.
Copyright © 2020 Elsevier Inc. All rights reserved.