Background: As new combinations of interventions aiming at interrupting malaria transmission are under evaluation, understanding the associated economic costs and benefits is critical for decision-making. This study assessed the economic cost and cost-effectiveness of the Magude project, a malaria elimination initiative implemented in a district in southern Mozambique (i.e. Magude) between August 2015-June 2018. This project piloted a combination of two mass drug administration (MDA) rounds per year for two consecutive years, annual rounds of universal indoor residual spraying (IRS) and a strengthened surveillance and response system on the back of universal long-lasting insecticide treated net (LLIN) coverage and routine case management implemented by the National Malaria Control Program (NMCP). Although local transmission was not interrupted, the project achieved large reductions in the burden of malaria in the target district.
Methods: We collected weekly economic data, estimated costs from the project implementer perspective and assessed the incremental cost-effectiveness ratio (ICER) associated with the Magude project as compared to routine malaria control activities, the counterfactual. We estimated disability-adjusted life years (DALYs) for malaria cases and deaths and assessed the variation of the ICER over time to capture the marginal costs and effectiveness associated with subsequent phases of project implementation. We used deterministic and probabilistic sensitivity analyses to account for uncertainty and built an alternative scenario by assuming the implementation of the interventions from a governmental perspective. Economic costs are provided in constant US$2015.
Results: After three years, the Magude project averted a total of 3,171 DALYs at an incremental cost of $2.89 million and an average yearly cost of $20.7 per targeted person. At an average cost of $19.4 per person treated per MDA round, the social mobilization and distribution of door-to-door MDA contributed to 53% of overall resources employed, with personnel and logistics being the main cost drivers. The ICER improved over time as a result of decreasing costs and improved effectiveness. The overall ICER was $987 (CI95% 968-1,006) per DALY averted, which is below the standard cost-effectiveness (CE) threshold of $1,404/DALY averted, three times the gross domestic product (GDP) per capita of Mozambique, but above the threshold of interventions considered highly cost-effective (one time the GDP per capita or $468/DALY averted) and above the recently suggested thresholds based on the health opportunity cost ($537 purchasing power parity/ DALY averted). A significantly lower ICER was obtained in the implementation scenario from a governmental perspective ($441/DALY averted).
Conclusion: Despite the initial high costs and volume of resources associated with its implementation, MDA in combination with other existing malaria control interventions, can be a cost-effective strategy to drastically reduce transmission in areas of low to moderate transmission in sub-Saharan Africa. However, further studies are needed to understand the capacity of the health system and financial affordability to scale up such strategies at regional or national level.