The environmental stress response causes ribosome loss in aneuploid yeast cells

Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17031-17040. doi: 10.1073/pnas.2005648117. Epub 2020 Jul 6.

Abstract

Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the "environmental stress response" (ESR) and the "common aneuploidy gene-expression" (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.

Keywords: CAGE; ESR; aneuploidy; ribosome loss.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aneuploidy
  • Environment
  • Gene Expression Regulation, Fungal
  • RNA, Fungal / genetics
  • RNA, Fungal / metabolism
  • Ribosomes / genetics*
  • Ribosomes / metabolism*
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism*
  • Sequence Analysis, RNA
  • Stress, Physiological / genetics*
  • Transcriptome / genetics

Substances

  • RNA, Fungal