Dexmedetomidine promotes the progression of hepatocellular carcinoma through hepatic stellate cell activation

Exp Mol Med. 2020 Jul;52(7):1062-1074. doi: 10.1038/s12276-020-0461-6. Epub 2020 Jul 6.

Abstract

Dexmedetomidine (DEX) is an anesthetic that is widely used in the clinic, and it has been reported to exhibit paradoxical effects in the progression of multiple solid tumors. In this study, we sought to explore the mechanism by which DEX regulates hepatocellular carcinoma (HCC) progression underlying liver fibrosis. We determined the effects of DEX on tumor progression in an orthotopic HCC mouse model of fibrotic liver. A coculture system and a subcutaneous xenograft model involving coimplantation of mouse hepatoma cells (H22) and primary activated hepatic stellate cells (aHSCs) were used to study the effects of DEX on HCC progression. We found that in the preclinical mouse model of liver fibrosis, DEX treatment significantly shortened median survival time and promoted tumor growth, intrahepatic metastasis and pulmonary metastasis. The DEX receptor (ADRA2A) was mainly expressed in aHSCs but was barely detected in HCC cells. DEX dramatically reinforced HCC malignant behaviors in the presence of aHSCs in both the coculture system and the coimplantation mouse model, but DEX alone exerted no significant effects on the malignancy of HCC. Mechanistically, DEX induced IL-6 secretion from aHSCs and promoted HCC progression via STAT3 activation. Our findings provide evidence that the clinical application of DEX may cause undesirable side effects in HCC patients with liver fibrosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinoma, Hepatocellular / complications
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / pathology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Chemokines / metabolism
  • Dexmedetomidine / chemistry
  • Dexmedetomidine / pharmacology
  • Dexmedetomidine / therapeutic use*
  • Disease Models, Animal
  • Disease Progression*
  • Hepatic Stellate Cells / drug effects
  • Hepatic Stellate Cells / pathology*
  • Humans
  • Interleukin-6 / metabolism
  • Liver Cirrhosis / complications
  • Liver Cirrhosis / pathology
  • Liver Neoplasms / complications
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / pathology*
  • Male
  • Mice, Inbred C57BL
  • Neoplasm Metastasis
  • Receptors, Adrenergic, alpha-2 / metabolism
  • STAT3 Transcription Factor / metabolism

Substances

  • ADRA2A protein, human
  • Chemokines
  • Interleukin-6
  • Receptors, Adrenergic, alpha-2
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • Dexmedetomidine