Although various strategies have been developed to prepare anisotropic polymeric particles, it remains challenging to fabricate monolayers of anisotropic polymeric particles, which can extend the applications of anisotropic particles. Here, we develop a novel and facile approach to fabricate monolayers of anisotropic polymeric particles. Monolayers of polystyrene (PS) microspheres with a mean diameter of 10 μm are deposited on glass substrates coated with poly(methyl methacrylate) films, followed by sequential selective solvent on-film annealing processes. Monolayers of anisotropic polymeric particles, such as the snowman-like PS particles, are successfully fabricated. Such unique structures possess the long-range ordering of monolayers (the structure factor) and the anisotropic geometry of individual particles (the form factor). The nanomechanical properties of the PS particles are also characterized using atomic force microscopy force volume measurements, showing a decrease in the Young's moduli of the PS particles owing to the looser packing of the polymer chains. This work provides the most facile and versatile strategy by far to fabricate monolayers of ordered anisotropic polymeric particles, which are inaccessible by other traditional means.
Keywords: anisotropic polymeric particles; force volume measurements; monolayers; nanomechanics; selective solvent annealing.