This paper describes a framework for modelling dopamine function in the mammalian brain. It proposes that both learning and action planning involve processes minimizing prediction errors encoded by dopaminergic neurons. In this framework, dopaminergic neurons projecting to different parts of the striatum encode errors in predictions made by the corresponding systems within the basal ganglia. The dopaminergic neurons encode differences between rewards and expectations in the goal-directed system, and differences between the chosen and habitual actions in the habit system. These prediction errors trigger learning about rewards and habit formation, respectively. Additionally, dopaminergic neurons in the goal-directed system play a key role in action planning: They compute the difference between a desired reward and the reward expected from the current motor plan, and they facilitate action planning until this difference diminishes. Presented models account for dopaminergic responses during movements, effects of dopamine depletion on behaviour, and make several experimental predictions.
Keywords: active inference; computational biology; dopamine; human; mouse; neuroscience; rat; reinforcement learning; rhesus macaque; systems biology.
In the brain, chemicals such as dopamine allow nerve cells to ‘talk’ to each other and to relay information from and to the environment. Dopamine, in particular, is released when pleasant surprises are experienced: this helps the organism to learn about the consequences of certain actions. If a new flavour of ice-cream tastes better than expected, for example, the release of dopamine tells the brain that this flavour is worth choosing again. However, dopamine has an additional role in controlling movement. When the cells that produce dopamine die, for instance in Parkinson’s disease, individuals may find it difficult to initiate deliberate movements. Here, Rafal Bogacz aimed to develop a comprehensive framework that could reconcile the two seemingly unrelated roles played by dopamine. The new theory proposes that dopamine is released when an outcome differs from expectations, which helps the organism to adjust and minimise these differences. In the ice-cream example, the difference is between how good the treat is expected to taste, and how tasty it really is. By learning to select the same flavour repeatedly, the brain aligns expectation and the result of the choice. This ability would also apply when movements are planned. In this case, the brain compares the desired reward with the predicted results of the planned actions. For example, while planning to get a spoonful of ice-cream, the brain compares the pleasure expected from the movement that is currently planned, and the pleasure of eating a full spoon of the treat. If the two differ, for example because no movement has been planned yet, the brain releases dopamine to form a better version of the action plan. The theory was then tested using a computer simulation of nerve cells that release dopamine; this showed that the behaviour of the virtual cells closely matched that of their real-life counterparts. This work offers a comprehensive description of the fundamental role of dopamine in the brain. The model now needs to be verified through experiments on living nerve cells; ultimately, it could help doctors and researchers to develop better treatments for conditions such as Parkinson’s disease or ADHD, which are linked to a lack of dopamine.
© 2020, Bogacz.