Aims: We set about to investigate the potential role of microRNA-155-5p (miR-155-5p) in the development of immune thrombocytopenia (ITP), an idiopathic deficiency of blood platelets.
Main methods: Initially, RT-qPCR and Western blot analyses were carried out to determine the expression of miR-155-5p and SOCS1 in peripheral blood mononuclear cells (PBMCs) and macrophages from ITP patients. We undertook gain- and loss- function methods by transfection of macrophages and PBMCs with treated plasmids. The expression patterns of platelet-related factors were measured by ELISA, and the expressions of PD1, PDL1, and macrophage M2 marker CD206 and CD86 were also measured. The relationship between miR-155-5p and SOCS1 was determined using the dual-luciferase reporter gene assay. We also established an ITP mouse model to explore the roles of miR-155-5p and SOCS1 in vivo.
Key findings: miR-155-5p was up-regulated, while SOCS1 was down-regulated in PBMCs and macrophages from ITP patients. SOCS1 was indicated as a target of miR-155-5p. Inhibition of miR-155-5p or up-regulation of SOCS1 facilitated macrophage M2 polarization as demonstrated by an increased M2/M1 ratio and suppressed expression of platelet-related factors. Furthermore, silencing of SOCS1 promoted ITP progression through blocking the PD1/PDL1 pathway, whilst upregulation of miR-155-5p remarkably increased the platelet abundance and suppressed SOCS1 expression in ITP model mice.
Significance: Silencing of miR-155-5p could promote PD1/PDL1 pathway-mediated macrophage M2 polarization and prevent ITP via up-regulation of SOCS1, thus relieving ITP.
Keywords: Immune thrombocytopenia; Macrophage M2 polarization; Peripheral blood mononuclear cell; SOCS1; microRNA-155-5p.
Copyright © 2020 Elsevier Inc. All rights reserved.