A high-throughput LC-MS/MS method for the measurement of the bile acid/salt content in microbiome-derived sample sets

MethodsX. 2020 Jun 12:7:100951. doi: 10.1016/j.mex.2020.100951. eCollection 2020.

Abstract

Due to the physicochemical properties of bile acids/salts (i.e., hydrophobic and ionizable), the application of reverse-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based methods are ideally suited for the measurement of these compounds in a host of microbiologically-relevant matrices. Here, we provide a detailed bioanalytical protocol that contains several modifications of a method previously described by Wegner et al. [1]. Briefly, this modified method exhibits the following advantages for the measurement of cholic acid (CA), taurocholic acid (TCA), and deoxycholic acid (DCA) in microbiome-relevant sample matrices: i) fecal sample processing has been streamlined by the elimination of lyophilization and manual homogenization steps; ii) the Sciex 6500 QTRAP hybrid triple-quadrupole/linear ion trap mass spectrometer has sufficient sensitivity to perform the measurement of bile acids/salts in negative ion mode - ammonium adducts of bile acids/salts are not required for detection; and, iii) assay throughput has been boosted by more than 5-fold by shortening the chromatographic duty cycle of a single sample injection from 45 min to 8.4 min. Recently, the method was used to perform 508 sequential injections (72 calibration standards, 52 blank-internal standard sample, and 368 MiniBioReactor Array (MBRA)-derived samples) from four separate batches over a 4-day time period.

Keywords: Bioanalytical chemistry; High-performance liquid chromatography; High-throughput sample analysis; LC-MS/MS; Microbiology; Microbiome.