Prediction of two-dimensional antiferromagnetic ferroelasticity in an AgF2 monolayer

Nanoscale Horiz. 2020 Oct 1;5(10):1386-1393. doi: 10.1039/d0nh00362j. Epub 2020 Jul 13.

Abstract

Two-dimensional multiferroics, simultaneously harboring antiferromagneticity and ferroelasticity, are essential and highly sought for miniaturized device applications, such as high-density data storage, but thus far they have rarely been explored. Herein, using first principles calculations, we identified two-dimensional antiferromagnetic ferroelasticity in an AgF2 monolayer that is dynamically and thermally stable, and can be easily fabricated from its bulk. The AgF2 monolayer is an antiferromagnetic semiconductor with large spin polarization, and with great structural distortion due to its intrinsic Jahn-Teller effect when thinning the AgF2 down to a monolayer. Additionally, it features excellent ferroelasticity with high transition signal and a low switching barrier, rendering the room-temperature nonvolatile memory accessible. Such coexistence of antiferromagneticity and ferroelasticity is of great significance to the study of two-dimensional multiferroics and also renders the AgF2 monolayer a promising platform for future multifunctional device applications.