Multiomics Investigation Revealing the Characteristics of HIV-1-Infected Cells In Vivo

Cell Rep. 2020 Jul 14;32(2):107887. doi: 10.1016/j.celrep.2020.107887.

Abstract

For eradication of HIV-1 infection, it is important to elucidate the detailed features and heterogeneity of HIV-1-infected cells in vivo. To reveal multiple characteristics of HIV-1-producing cells in vivo, we use a hematopoietic-stem-cell-transplanted humanized mouse model infected with GFP-encoding replication-competent HIV-1. We perform multiomics experiments using recently developed technology to identify the features of HIV-1-infected cells. Genome-wide HIV-1 integration-site analysis reveals that productive HIV-1 infection tends to occur in cells with viral integration into transcriptionally active genomic regions. Bulk transcriptome analysis reveals that a high level of viral mRNA is transcribed in HIV-1-infected cells. Moreover, single-cell transcriptome analysis shows the heterogeneity of HIV-1-infected cells, including CXCL13high cells and a subpopulation with low expression of interferon-stimulated genes, which can contribute to efficient viral spread in vivo. Our findings describe multiple characteristics of HIV-1-producing cells in vivo, which could provide clues for the development of an HIV-1 cure.

Keywords: HIV; genome; humanized mouse; multiomics; transcriptome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Genomics*
  • Green Fluorescent Proteins / metabolism
  • HEK293 Cells
  • HIV Infections / genetics*
  • HIV Infections / metabolism*
  • HIV-1 / physiology*
  • Humans
  • Male
  • Mice
  • Transcriptome / genetics

Substances

  • Green Fluorescent Proteins