Background/aim: The aim of the present study was to assess the association between PM2.5, its sources, and preterm birth (PTB), low birth weight (LBW), and small for gestational age (SGA) in a large open residential cohort (Supersito Project in the Emilia-Romagna Region - Northern Italy).
Methods: We collected 2012-2014 pregnancy and childbirth data from Birth Assistance Certificates and selected the pregnancies of interest. PTBs (gestational age < 37 weeks), LBW (weight < 2500 g), and SGA (newborns weighing ≤ 10th age and pregnancy week-specific percentile) were considered. Three-year measurements of daily concentrations and constituents of PM2.5 were available at four sites and were analyzed through a source apportionment approach identifying 6 sources (traffic, biomass burning, oil combustion, anthropogenic mix, and two secondary factors). Exposure to PM2.5 and sources was calculated at address level. Using logistic regression models, associations between exposure and outcomes were derived, applying single-pollutant and two-pollutant models, to verify the independent effect of each source.
Results: The study included 23,708 neonates born to 23,415 women, among whom 1,311 PTB, 424 LBW, and 1,354 SGA occurred. PTB was the only outcome associated with PM2.5 mass (OR 1.03, 95% CI 1.002-1.058 per 1 μg/m3). Traffic, oil combustion and secondary sulfates and organics showed independent effects on PTB. Exposure to secondary nitrates was associated with a lower risk of PTB. There was no association between LBW or SGA and source-specific PM2.5 components or the residual PM2.5 related to all other sources.
Conclusion: This study found an association between PTB and PM2.5. Traffic, secondary sulfates, and organic and oil combustion were the sources with most consistent association.
Keywords: Air pollution; Birth weight; Particulate matter; Preterm birth; Small for gestational age.
Copyright © 2020 Elsevier Inc. All rights reserved.