Infertility is an important health problem that affects up to 16% of couples worldwide. Male infertility is responsible for 50% of the cases. Currently, a physical examination, hormone profiling and the evaluation of two consecutive semen samples (to determine the sperm concentration, motility, morphology and, in very few cases, sperm DNA integrity) are the sole tools that physicians have to evaluate infertility in men. Antioxidant therapy is often used to improve sperm quality and function in infertile men. However, there are controversial results regarding the efficacy of these treatments. Prdx6-/- male mice are subfertile, displaying significant oxidative damage in the lipids, proteins and DNA of their spermatozoa. Here, we used Prdx6-/- male mice to test whether a novel combination of tocopherols that contained 60% γ-tocopherol and ascorbic acid could restore their fertility. These mice were fed with the supplemented (Vit. Mix) or control diets. To assess sperm quality, we determined the motility, levels of lipid peroxidation, DNA oxidation and tyrosine nitration in the spermatozoa. The number of pups sired by the Prdx6-/- mice fed with the Vit. Mix diet was higher than that sired by the males fed with the control diet, and the pups' mortality was lower. The sperm quality was improved in the males fed with the supplemented diet. We concluded that treatment with a supplement composed of tocopherols and rich in γ-tocopherol and ascorbic acid is effective in restoring fertility in cases where oxidative stress and high levels of tyrosine nitration are associated with male infertility.
Keywords: fertilization; lipid peroxidation; reactive oxygen species; spermatozoa; vitamin C; vitamin E.