Over the years, surgical strategies have been developed in hope of full regeneration of the injured cartilage. In our study, we aimed to develop an optimized chondrocyte culture isolation technique as an active ingredient of a standardized autologous chondrocte implantation product, which is able to maintain the phenotype along with the molecular features of the cartilage. We compared different enzymes, which suggested optimal performance with collagenase type II at 5 mg/ml concentration. Thereafter, we observed that COL2 and GAG expression is substantially reduced with passaging. There was a need to omit passaging to reach the optimal isolation method. We then tested various growth factors and media in order to maintain the natural character of chondrocytes. Our study also suggested the highest COL2 and GAG expressions with the highest recovery in the presence of Advanced DMEM. Autologous chondrocyte implantation manufacturing approval was recently received from the national competent authority, making it possible to utilize the process engineering protocol developed with this study at our Tissue and Cell Manufacturing Center as a part of the autologous chondrocyte implantation manufacturing standard operation procedure (SOP).
Keywords: Autologous chondrocyte implantation; Chondrocyte culturing; Chondrocyte isolation; Optimization; Process engineering.