Teeth tell the tale of interactions between predator and prey. If a dental battery is made up of teeth that look similar, they are morphologically homodont, but if there is an unspecified amount of regional specialization in size or shape, they are morphologically heterodont. These are vague terms with no useful functional implication because morphological homodonty does not necessarily equal functional homodonty. Teeth that look the same may not function the same. Conical teeth are prevalent in fishes, superficially tasked with the simple job of puncture. There is a great deal of variation in the shape and placement of conical teeth. Anterior teeth may be larger than posterior ones, larger teeth may be surrounded by small ones, and patches of teeth may all have the same size and shape. Such variations suggest that conical dentitions might represent a single morphological solution for different functional problems. We are interested in the concept of homodonty and using the conical tooth as a model to differentiate between tooth shape and performance. We consider the stress that a tooth can exert on prey as stress is what causes damage. To create a statistical measure of functional homodonty, stress was calculated from measurements of surface area, position, and applied force. Functional homodonty is then defined as the degree to which teeth along the jaw all bear/exert similar stresses despite changes in shape. We find that morphologically heterodont teeth are often functionally homodont and that position is a better predictor of performance than shape. Furthermore, the arrangement of teeth affects their function, such that there is a functional advantage to having several smaller teeth surrounding a singular large tooth. We demonstrate that this arrangement of teeth is useful to grab, rather than tear, prey upon puncture, with the smaller teeth dissipating large stress forces around the larger tooth. We show that measurements of how shape affects stress distribution in response to loading give us a clearer picture of the evolution of conically shaped teeth.
Keywords: Heterodonty; modeling; puncture; teeth.
© 2020 Anatomical Society.