Blocking CCN2 preferentially inhibits osteoclastogenesis induced by repetitive high force bone loading

Connect Tissue Res. 2021 Jan;62(1):115-132. doi: 10.1080/03008207.2020.1788546. Epub 2020 Jul 20.

Abstract

Purpose/Aim: We recently found that blocking CCN2 signaling using a monoclonal antibody (FG-3019) may be a novel therapeutic strategy for reducing overuse-induced tissue fibrosis. Since CCN2 plays roles in osteoclastogenesis, and persistent performance of a high repetition high force (HRHF) lever pulling task results in a loss in trabecular bone volume in the radius, we examined here whether blocking CCN2 signaling would reduce the early catabolic effects of performing a HRHF task for 3 weeks. Materials and Methods: Young adult, female, Sprague-Dawley rats were operantly shaped to learn to pull at high force levels, before performing the HRHF task for 3 weeks. HRHF task rats were then left untreated (HRHF Untreated), treated in task weeks 2 and 3 with a monoclonal antibody that antagonizes CCN2 (HRHF+FG-3019), or treated with an IgG (HRHF+IgG), while continuing to perform the task. Non-task control rats were left untreated. Results: In metaphyseal trabeculae of the distal radius, HRHF Untreated and HRHF-IgG rats showed increased osteoblast numbers and other indices of bone formation, compared to controls, yet decreased trabecular bone volume, increased osteoclast numbers, and increased serum CTX-1 (a serum biomarker of bone resorption). HRHF+FG-3019 rats also showed increased osteoblast numbers and bone formation, but in contrast to HRHF Untreated and HRHF-IgG rats, showed higher trabecular bone volume, and reduced osteoclast numbers and serum CTX-1 levels (and statistically similar to Control levels). Conclusions: HRHF loading increased bone formation in each task group, yet blocking CCN2 dampened trabecular bone catabolism by reducing osteoclast numbers and activity.

Keywords: CTGF; fibrosis; muscle; musculoskeletal disorders; overuse.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal
  • Connective Tissue Growth Factor
  • Cumulative Trauma Disorders
  • Disease Models, Animal
  • Female
  • Immunoglobulin G
  • Osteogenesis*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Antibodies, Monoclonal
  • CCN2 protein, rat
  • Immunoglobulin G
  • Connective Tissue Growth Factor