The prominent role of dendritic cells (DC) in promoting tolerance and the development of methods to generate clinical grade products allowed the clinical application of tolerogenic DC (tolDC)-based therapies for controlling unwanted immune responses. We established an efficient method to generate tolerogenic human DC, producing supra-physiological levels of IL-10, by genetically engineering monocyte-derived DC with a bidirectional Lentiviral Vector (bdLV) encoding for IL-10 and a marker gene. DCIL-10 are mature DC, modulate T cell responses, promote T regulatory cells, and are phenotypically and functionally stable upon stimulation. Adoptive transfer of human DCIL-10 in a humanized mouse model dampens allogeneic T cell recall responses, while murine DCIL-10 delays acute graft-vs.-host disease in mice. Our report outlines an efficient method to transduce human myeloid cells with large-size LV and shows that stable over-expression of IL-10 generates an effective cell product for future clinical applications in the contest of allogeneic transplantation.
Keywords: IL-10; allogeneic transplantation; cell therapy; dendritic cells; immune tolerance.
Copyright © 2020 Comi, Amodio, Passeri, Fortunato, Santoni de Sio, Andolfi, Kajaste-Rudnitski, Russo, Cesana and Gregori.