Rapid preliminary purity evaluation of tumor biopsies using deep learning approach

Comput Struct Biotechnol J. 2020 Jun 16:18:1746-1753. doi: 10.1016/j.csbj.2020.06.007. eCollection 2020.

Abstract

Tumor biopsy is one of the most widely used materials in cancer diagnoses and molecular studies, where the purity of the biopsies (i.e., proportion of cells that are cancerous) is crucial for both applications. However, conventional approaches for tumor biopsy purity evaluation require experienced pathologists and/or various materials/experiments therefore were time-consuming and error prone. Rapid, easy-to-perform and cost-effective methods are thus still of demand. Recent studies had demonstrated that molecular signatures were informative to this task. Previously, we had developed GeneCT, a deep learning-based cancerous status and tissue-of-origin classifier for pan-tumor/tissue biopsies. In the current work, we applied GeneCT on datasets collected from various groups, where the experimental protocols and cancer types differed from each other. We found that GeneCT showed high accuracies on most datasets; for samples with unexpected results, in-depth investigations suggested that they might suffer from imperfect purity. In silico mixture experiments further showed that GeneCT classification was highly indicative in predicting the purity of the tumor biopsies. Considering that transcriptome profiling is a common and inexpensive experiment in molecular cancer studies, our deep learning-based GeneCT could thus serve as a valuable tool for rapid, preliminary tumor biopsy purity assessment.

Keywords: Cancer; Gene expression; Machine learning; RNA-seq.