Human mesenchymal stromal cells (hMSCs) have enormous potential for the treatment of various inflammatory and degenerative diseases. Their manufacturing for cell-based therapies requires extensive ex vivo expansion and optimal growth conditions. To support cell adhesion, spreading, and growth in serum-free culture conditions, the applied plasticware needs to be functionalized with essential biochemical cues. By employing a recently developed screening tool, a chemically defined functional matrix composed of dextran sulfate and a bone-related extracellular matrix peptide is identified, which supports long-term culture of bone marrow-derived hMSCs in serum-free culture conditions. Cells grown under these conditions display rapid proliferation and high viability while maintaining their differentiation and immunomodulatory capacity, characteristic cell morphology, expression of hMSC-specific surface antigens as well as important markers of stemness and differentiation potential. The chemically defined, serum-free culture environment enables reliable and reproducible expansion of hMSCs important for cell based-therapies, drug screening, and disease modeling.
Keywords: cell manufacturing; cell-based therapy; mesenchymal stromal cells; serum-free culture; surface coating.
© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.