Artificial intelligence (AI)-based automated classification and segmentation of optical coherence tomography (OCT) features have become increasingly popular. However, its 3-dimensional volumetric nature has made developing an algorithm that generalizes across all patient populations and OCT devices challenging. Several recent studies have reported high diagnostic performances of AI models; however, significant methodological challenges still exist in applying these models in real-world clinical practice. Lack of large-image datasets from multiple OCT devices, nonstandardized imaging or post-processing protocols between devices, limited graphics processing unit capabilities for exploiting 3-dimensional features, and inconsistency in the reporting metrics are major hurdles in enabling AI for OCT analyses. We discuss these issues and present possible solutions.
Keywords: artificial intelligence; deep learning; optical coherence tomography.
Copyright 2020 The Authors.