Philanthotoxin-343 attenuates retinal and optic nerve injury, and protects visual function in rats with N-methyl-D-aspartate-induced excitotoxicity

PLoS One. 2020 Jul 24;15(7):e0236450. doi: 10.1371/journal.pone.0236450. eCollection 2020.

Abstract

Retinal ganglion cell (RGC) loss and optic neuropathy, both hallmarks of glaucoma, have been shown to involve N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity. This study investigated the neuroprotective effects of Philanthotoxin (PhTX)-343 in NMDA-induced retinal injury to alleviate ensuing visual impairments. Sprague-Dawley rats were divided into three; Group I was intravitreally injected with phosphate buffer saline as the control, Group II was injected with NMDA (160 nM) to induce retinal excitotoxic injury, while Group III was injected with PhTX-343 (160 nM) 24 h prior to excitotoxicity induction with NMDA. Rats were subjected to visual behaviour tests seven days post-treatment and subsequently euthanized. Rat retinas and optic nerves were subjected to H&E and toluidine blue staining, respectively. Histological assessments showed that NMDA exposure resulted in significant loss of retinal cell nuclei and thinning of ganglion cell layer (GCL). PhTX-343 pre-treatment prevented NMDA-induced changes where the RGC layer morphology is similar to the control. The numbers of nuclei in the NMDA group were markedly lower compared to the control (p<0.05). PhTX-343 group had significantly higher numbers of nuclei within 100 μm length and 100 μm2 area of GCL (2.9- and 1.7-fold, respectively) compared to NMDA group (p<0.05). PhTX-343 group also displayed lesser optic nerve fibres degeneration compared to NMDA group which showed vacuolation in all sections. In the visual behaviour test, the NMDA group recorded higher total distance travelled, and lower total immobile time and episodes compared to the control and PhTX-343 groups (p<0.05). Object recognition tests showed that the rats in PhTX-343 group could recognize objects better, whereas the same objects were identified as novel by NMDA rats despite multiple exposures (p<0.05). Visual performances in the PhTX-343 group were all comparable with the control (p>0.05). These findings suggested that PhTX-343 inhibit retinal cell loss, optic nerve damage, and visual impairments in NMDA-induced rats.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Male
  • N-Methylaspartate / toxicity
  • Neuroprotective Agents* / pharmacology
  • Neuroprotective Agents* / therapeutic use
  • Optic Nerve / drug effects*
  • Optic Nerve / pathology
  • Optic Nerve Injuries / chemically induced
  • Optic Nerve Injuries / drug therapy*
  • Phenols* / pharmacology
  • Phenols* / therapeutic use
  • Polyamines* / pharmacology
  • Polyamines* / therapeutic use
  • Rats
  • Rats, Sprague-Dawley
  • Retinal Ganglion Cells / drug effects*
  • Retinal Ganglion Cells / pathology
  • Vision, Ocular / drug effects

Substances

  • Neuroprotective Agents
  • Phenols
  • Polyamines
  • philanthotoxin 343
  • N-Methylaspartate

Grants and funding

IFA received the Fundamental Research Grant Scheme (FRGS) from the Ministry of Higher Education, Malaysia (FRGS/1/2017/SKK10/UNIKL/02/1). http://www.mohe.gov.my/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.