Epigenomic State Transitions Characterize Tumor Progression in Mouse Lung Adenocarcinoma

Cancer Cell. 2020 Aug 10;38(2):212-228.e13. doi: 10.1016/j.ccell.2020.06.006. Epub 2020 Jul 23.

Abstract

Regulatory networks that maintain functional, differentiated cell states are often dysregulated in tumor development. Here, we use single-cell epigenomics to profile chromatin state transitions in a mouse model of lung adenocarcinoma (LUAD). We identify an epigenomic continuum representing loss of cellular identity and progression toward a metastatic state. We define co-accessible regulatory programs and infer key activating and repressive chromatin regulators of these cell states. Among these co-accessibility programs, we identify a pre-metastatic transition, characterized by activation of RUNX transcription factors, which mediates extracellular matrix remodeling to promote metastasis and is predictive of survival across human LUAD patients. Together, these results demonstrate the power of single-cell epigenomics to identify regulatory programs to uncover mechanisms and key biomarkers of tumor progression.

Keywords: cancer; epigenomics; epithelial-to-mesenchymal transition; metastasis; non-small cell lung cancer; single cell.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / genetics*
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology
  • Animals
  • Cell Line, Tumor
  • Disease Models, Animal*
  • Disease Progression
  • Epigenomics / methods*
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Signal Transduction / genetics
  • Single-Cell Analysis / methods