A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors

SSRN [Preprint]. 2020 May 27:3611279. doi: 10.2139/ssrn.3611279.

Abstract

To predict the tropism of human coronaviruses, we profile 28 SCARFs using scRNA-seq data from a wide range of healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Among adult organs, enterocytes and goblet cells of small intestine and colon, kidney proximal tubule cells, and gallbladder basal cells appear permissive to SARS-CoV-2, consistent with clinical data. Our analysis also suggests alternate entry paths for SARS-CoV-2 infection of the lung, CNS, and heart. We predict spermatogonial cells and prostate endocrine cells, but not ovarian cells, are highly permissive to SARS-CoV-2, suggesting male-specific vulnerabilities. Early embryonic and placental development show a moderate risk of infection. The nasal epithelium is characterized by high expression of both promoting and restricting factors and a potential age-dependent shift in SCARF expression. Lastly, SCARF expression appears broadly conserved across primate organs examined. Our study establishes an important resource for investigations of coronavirus pathology. Funding: M.S. is supported by a Presidential Postdoctoral Fellowship from Cornell University. V.B. is supported by a Career Development Fellowship at DZNE Tuebingen. Work on host-virus interactions in the Feschotte lab is funded by R35 GM122550 from the National Institutes of Health. Conflict of Interest: The authors declare that there is no conflict of interest.

Publication types

  • Preprint