Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide-conjugated-AIEgen (FC-PyTPA) is presented: upon loading with siRNA, it self-assembles into FCsiRNA -PyTPA. When approaching the region near tumor cells, FCsiRNA -PyTPA responds to extracellular MMP-2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae-mediated endocytosis. This two-part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self-assembly of nanofiber precursor F, gene interference of CsiRNA , and ROS production of PyTPA are activated to inhibit tumor growth.
Keywords: caveolae-mediated endocytosis; macropinocytosis; multiple-agent-therapy probes; nanofibers/gene/ROS; peptide-conjugated-AIEgens.
© 2020 Wiley-VCH GmbH.