Real-World Outcomes of Patients with Refractory or Relapsed FLT3-ITD Acute Myeloid Leukemia: A Toulouse-Bordeaux DATAML Registry Study

Cancers (Basel). 2020 Jul 24;12(8):2044. doi: 10.3390/cancers12082044.

Abstract

Two recent phase 3 trials showed that outcomes for relapsed/refractory (R/R) FLT3-mutated acute myeloid leukemia (AML) patients may be improved by a single-agent tyrosine kinase inhibitor (TKI) (i.e., quizartinib or gilteritinib). In the current study, we retrospectively investigated the characteristics and real-world outcomes of R/R FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) patients in the Toulouse-Bordeaux DATAML registry. In the study, we included 316 patients with FLT3-ITD AML that received intensive chemotherapy as a first-line treatment. The rate of complete remission (CR) or CR without hematological recovery (CRi) was 75.2%, and 160 patients were R/R after a first-line TKI-free treatment (n = 294). Within the subgroup of R/R patients that fulfilled the main criteria of the QUANTUM-R study, 48.9% received an intensive salvage regimen; none received hypomethylating agents or low-dose cytarabine. Among the R/R FLT3-ITD AML patients with CR1 durations < 6 months who received intensive TKI-free treatment, the rate of CR or CRi after salvage chemotherapy was 52.8%, and these results allowed a bridge to be transplanted in 39.6% of cases. Finally, in this QUANTUM-R standard arm-matched cohort, the median overall survival (OS) was 7.0 months and 1-, 3- and 5-year OS were 30.2%, 23.7% and 21.4%, respectively. To conclude, these real-world data show that the intensity of the second-line treatment likely affects response and transplantation rates. Furthermore, the results indicate that including patients with low-intensity regimens, such as low-dose cytarabine or hypomethylating agents, in the control arm of a phase 3 trial may be counterproductive and could compromise the results of the study.

Keywords: FLT3-ITD mutation; acute myeloid leukemia; primary induction failure; relapse; tyrosine kinase inhibitors.