Background/objectives: Repetitive transcranial magnetic stimulation (rTMS) has been recognized as a promising intervention for the treatment of post-stroke motor deficits. Here, we explore safety, feasibility, and potential effectiveness of high-frequency rTMS (HF-rTMS) delivered with the Hesed coil (H-coil) during active cycling on paretic lower extremity (LE) motor function in chronic stroke.
Materials and methods: Twelve subjects with a first-ever stroke were recruited in this double-blind, placebo controlled, crossover study. Eleven sessions of HF-rTMS (40 2s-trains of 20 Hz at 90% resting leg motor threshold) were delivered over the LE motor areas using the H-coil during active cycling for three weeks. Each subject underwent both real and sham rTMS treatments separated by a four-week washout period, in a random sequence. Vital signs were recorded before and after each rTMS session. Any discomfort related to stimulation and side effects were recorded. LE function was also evaluated with Fugl-Meyer assessment (FMA-LE), spasticity was assessed with modified-Ashworth scale and measures of gait speed and endurance (10-meter and 6-min walk tests, respectively) were recorded.
Results: No participant reported serious adverse effects. During real rTMS, 4 of 12 subjects reported mild side effects including transitory dizziness and muscle twitches on shoulder, so that intensity of stimulation initially set at 90% of RMT was reduced to 80% of RMT on average in these four subjects. Only real treatment was associated with a significant and sustained improvement in FMA-LL (67% responders vs. 9% of the sham). Spasticity significantly ameliorated only after the real rTMS. Real treatment did not offer advantages on walking timed measures when compared with sham.
Conclusions: This exploratory study suggests that bilateral HF-rTMS combined with cycling is safe and potentially effective in ameliorating paretic LE motor function and spasticity, rather than gait speed or endurance, in chronic stroke.
Keywords: Gait disorders; NIBS; lower limb; rTMS; rehabilitation; stroke.
© 2020 International Neuromodulation Society.