Carbon-based nanomaterials have been widely utilized in catalysis and energy-related fields due to their fascinating properties. However, the controllable synthesis of porous carbon with refined morphology is still a formidable challenge due to inevitable aggregation/fusion of resulted carbon particles during the high-temperature synthetic process. Herein, a hierarchically oriented carbon-structured (fiber-like) composite is fabricated by simultaneously taking advantage of a confined pyrolysis strategy and disparate bond environments within metal-organic frameworks (MOFs). In the resultant composite, the oriented carbon provides a fast mass (molecule/ion/electron) transfer efficiency; the doping-N atoms can anchor or act as active sites; the mesoporous SiO2 (mSiO2 ) shell not only effectively prevents the derived carbon or active metal nanoparticles (NPs) from aggregation or leaching, but also acts as a "polysulfide reservoir" in the Li-S batteries to suppress the "shuttle" effect. Benefiting from these advantages, the synthesized composite Pd@NDHPC@mSiO2 (NDHPC means N-doped hierarchically porous carbon) exhibits extremely high catalytic activity and stability toward the one-pot Knoevenagel condensation-hydrogenation reaction. Furthermore, the oriented NDHPC@mSiO2 manifests a boosted capacity and cycling stability in Li-S batteries compared to the counterpart that directly pyrolyzes without silica protection. This report provides an effective strategy of fabricating hierarchically oriented carbon composites for catalysis and energy storage applications.
Keywords: Li-S batteries; N-doping; confined thermolysis; hierarchical pores; oriented carbons.
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.