TURBINE-MRE: A 3D hybrid radial-Cartesian EPI acquisition for MR elastography

Magn Reson Med. 2021 Feb;85(2):945-952. doi: 10.1002/mrm.28445. Epub 2020 Aug 1.

Abstract

Purpose: To develop a novel magnetic resonance elastography (MRE) acquisition using a hybrid radial EPI readout scheme (TURBINE), and to demonstrate its feasibility to obtain wave images and stiffness maps in a phantom and in vivo brain.

Method: The proposed 3D TURBINE-MRE is based on a spoiled gradient-echo MRE sequence with the EPI readout radially rotating about the phase-encoding axis to sample a full 3D k-space. A polyvinyl chloride phantom and 6 volunteers were scanned on a compact 3T GE scanner with a 32-channel head coil at 80 Hz and 60 Hz external vibration, respectively. For comparison, a standard 2D, multislice, spin-echo (SE) EPI-MRE acquisition was also performed with the same motion encoding and resolution. The TURBINE-MRE images were off-line reconstructed with iterative SENSE algorithm. The regional ROI analysis was performed on the 6 volunteers, and the median stiffness values were compared between SE-EPI-MRE and TURBINE-MRE.

Results: The 3D wave-field images and the generated stiffness maps were comparable between TURBINE-MRE and standard SE-EPI-MRE for the phantom and the volunteers. The Bland-Altman plot showed no significant difference in the median regional stiffness values between the two methods. The stiffness measured with the 2 methods had a strong linear relationship with a Pearson correlation coefficient of 0.943.

Conclusion: We demonstrated the feasibility of the new TURBINE-MRE sequence for acquiring the desired 3D wave-field data and stiffness maps in a phantom and in-vivo brains. This pilot study encourages further exploration of TURBINE-MRE for functional MRE, free-breathing abdominal MRE, and cardiac MRE applications.

Keywords: MR elastography; TURBINE; radial acquisition.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Echo-Planar Imaging
  • Elasticity Imaging Techniques*
  • Humans
  • Magnetic Resonance Imaging
  • Pilot Projects
  • Reproducibility of Results