One of the big challenges for proton therapy is the development of tools for online monitoring of the beam range, which are suited to operate in clinical conditions and can be included in the clinical practice. A Compton camera based on stacks of heavy scintillating fibers used for prompt-gamma imaging is a promising approach for this task. It provides full, three-dimensional information on the deposited dose distribution while showing a high detection efficiency and rate capability due to its high granularity. The investigation of the rate capability and detection efficiency of such a camera under clinical conditions by means of Geant4 simulations is presented along with the event construction algorithm. The results hint towards a very low pile-up rate in the detector and a relatively high detection efficiency, so that imaging of a single proton beam spot appears to be an achievable goal.
Keywords: Compton camera; Prompt-gamma imaging; Proton therapy; Range verification.
Copyright © 2020 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.