Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer

Theranostics. 2020 Jul 9;10(19):8633-8647. doi: 10.7150/thno.47938. eCollection 2020.

Abstract

Rationale: The prognosis of gastric cancer (GC) patients is poor, and there is limited therapeutic efficacy due to genetic heterogeneity and difficulty in early-stage screening. Here, we developed and validated an individualized gene set-based prognostic signature for gastric cancer (GPSGC) and further explored survival-related regulatory mechanisms as well as therapeutic targets in GC. Methods: By implementing machine learning, a prognostic model was established based on gastric cancer gene expression datasets from 1699 patients from five independent cohorts with reported full clinical annotations. Analysis of the tumor microenvironment, including stromal and immune subcomponents, cell types, panimmune gene sets, and immunomodulatory genes, was carried out in 834 GC patients from three independent cohorts to explore regulatory survival mechanisms and therapeutic targets related to the GPSGC. To prove the stability and reliability of the GPSGC model and therapeutic targets, multiplex fluorescent immunohistochemistry was conducted with tissue microarrays representing 186 GC patients. Based on multivariate Cox analysis, a nomogram that integrated the GPSGC and other clinical risk factors was constructed with two training cohorts and was verified by two validation cohorts. Results: Through machine learning, we obtained an optimal risk assessment model, the GPSGC, which showed higher accuracy in predicting survival than individual prognostic factors. The impact of the GPSGC score on poor survival of GC patients was probably correlated with the remodeling of stromal components in the tumor microenvironment. Specifically, TGFβ and angiogenesis-related gene sets were significantly associated with the GPSGC risk score and poor outcome. Immunomodulatory gene analysis combined with experimental verification further revealed that TGFβ1 and VEGFB may be developed as potential therapeutic targets of GC patients with poor prognosis according to the GPSGC. Furthermore, we developed a nomogram based on the GPSGC and other clinical variables to predict the 3-year and 5-year overall survival for GC patients, which showed improved prognostic accuracy than clinical characteristics only. Conclusion: As a tumor microenvironment-relevant gene set-based prognostic signature, the GPSGC model provides an effective approach to evaluate GC patient survival outcomes and may prolong overall survival by enabling the selection of individualized targeted therapy.

Keywords: gastric cancer; machine learning; prognostic signature; targeted therapy; tumor microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biomarkers, Tumor / genetics*
  • Biomarkers, Tumor / metabolism
  • Female
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Machine Learning
  • Male
  • Middle Aged
  • Nomograms
  • Precision Medicine
  • Prognosis
  • Proportional Hazards Models
  • Stomach Neoplasms / genetics
  • Stomach Neoplasms / metabolism
  • Stomach Neoplasms / mortality*
  • Survival Analysis
  • Tissue Array Analysis
  • Transforming Growth Factor beta1 / genetics*
  • Transforming Growth Factor beta1 / metabolism
  • Tumor Microenvironment
  • Vascular Endothelial Growth Factor B / genetics*
  • Vascular Endothelial Growth Factor B / metabolism
  • Young Adult

Substances

  • Biomarkers, Tumor
  • TGFB1 protein, human
  • Transforming Growth Factor beta1
  • VEGFB protein, human
  • Vascular Endothelial Growth Factor B