Background: Osteosarcoma (OS) is the most common primary malignancy arise from bone and is one of the causes of cancer-related deaths. Triptonide (TN), a diterpenoid epoxide presented in Tripterygium wilfordii, is shown to possess a broad spectrum of biological properties.
Methods: In this study, we investigate the growth inhibitory effect of TN against human OS cells and its underlying molecular mechanism of action.
Results: Findings of our in vitro study revealed that TN exhibited a dose-dependent cytotoxic effect in MG63 and U-2OS cells. ROS-mediated cytotoxic effect was achieved in OS cells treated with TN which was reversed upon NAC treatment. Significantly, increased expression of PERK, p-EIF2, GRP78, ATF4 and CHOP in TN-treated OS cells unfolds the molecular mechanism of TN targets ER stress-mediated apoptosis. Modulation of ERK MAPK pathway was also observed as evidenced by the increased phosphorylation of ERK (p-ERK) and p-p38 in TN-treated OS cells.
Conclusion: Altogether, the outcome of the study for the first time revealed that TN exhibited its potential chemotherapeutic effects through ROS-mediated ER stress-induced apoptosis via p38 and ERK MAPK signaling pathways.
Keywords: ER stress; MAPK signaling; apoptosis; osteosarcoma; triptonide.
© 2020 Zheng et al.