Background: In low-income countries, like Malawi, important public health measures including social distancing or a lockdown have been challenging to implement owing to socioeconomic constraints, leading to predictions that the COVID-19 pandemic would progress rapidly. However, due to limited capacity to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, there are no reliable estimates of the true burden of infection and death. We, therefore, conducted a SARS-CoV-2 serosurvey amongst health care workers (HCWs) in Blantyre city to estimate the cumulative incidence of SARS-CoV-2 infection in urban Malawi.
Methods: We recruited 500 otherwise asymptomatic HCWs from Blantyre City (Malawi) from 22nd May 2020 to 19th June 2020 and serum samples were collected from all participants. A commercial ELISA was used to measure SARS-CoV-2 IgG antibodies in serum.
Results: A total of 84 participants tested positive for SARS-CoV-2 antibodies. The HCWs with positive SARS-CoV-2 antibody results came from different parts of the city. The adjusted seroprevalence of SARS-CoV-2 antibodies was 12.3% [CI 8.2 - 16.5]. Using age-stratified infection fatality estimates reported from elsewhere, we found that at the observed adjusted seroprevalence, the number of predicted deaths was eight times the number of reported deaths.
Conclusions: The high seroprevalence of SARS-CoV-2 antibodies among HCWs and the discrepancy in the predicted versus reported deaths suggests that there was early exposure but slow progression of COVID-19 epidemic in urban Malawi. This highlights the urgent need for development of locally parameterised mathematical models to more accurately predict the trajectory of the epidemic in sub-Saharan Africa for better evidence-based policy decisions and public health response planning.
Keywords: COVID-19; IgG; Malawi; SARS-CoV-2; Seroprevalence.