We describe the development of a reactive force field for C/O systems under extreme temperatures and pressures, based on the many-body Chebyshev Interaction Model for Efficient Simulation (ChIMES). The resulting model, which targets carbon condensation under thermodynamic conditions of 6500 K and 2.5 g cm-3, affords a balance between model accuracy, complexity, and training set generation expense. We show that the model recovers much of the accuracy of density functional theory for the prediction of structure, dynamics, and chemistry when applied to dissociative condensed phase systems at 1:1 and 1:2 C:O ratios, as well as molten carbon. Our C/O modeling approach exhibits a 104 increase in efficiency for the same system size (i.e., 128 atoms) and a linear system size scalability over standard quantum molecular dynamics methods, allowing the simulation of significantly larger systems than previously possible. We find that the model captures the condensed-phase reaction-coupled formation of carbon clusters implied by recent experiments, and that this process is susceptible to strong finite size effects. Overall, we find the present ChIMES model to be well suited for studying chemical processes and cluster formation at pressures and temperatures typical of shock waves. We expect that the present C/O modeling paradigm can serve as a template for the development of a broader high pressure-high temperature force-field for condensed phase chemistry in organic materials.