The compound screening was initiated with a direct staining assay to identify compounds binding to Tau aggregates and not Abeta plaques using human brain sections derived from late stage Alzheimer's disease donors. The binding of Tau aggregate selective compounds was then quantitatively assessed with human brain derived paired helical filaments utilizing the label-free Back Scattering Interferometry assay. In vivo biodistribution experiments of selected fluorine-18 labeled compounds were performed in mice to assess brain uptake, brain washout, and defluorination. Compound 11 emerged as the most promising candidate, displaying high in vitro binding affinity and selectivity to neurofibrillary tangles. Fluorine-18 labeled compound 11 showed high brain uptake and rapid washout from the mouse brain with no observed bone uptake. Furthermore, compound 11 was able to detect Tau aggregates in tauopathy brain sections from corticobasal degeneration, progressive supranuclear palsy, and Pick's disease donors. Thus, 2-(4-(2-fluoroethoxy)piperidin-1-yl)-9-methyl-9H-pyrrolo[2,3-b:4,5-c']dipyridine (PI-2014, compound 11) was selected for characterization in a first-in-human study.
Keywords: Alzheimer disease; Fluorine-18; Neuroimaging; Positron emission tomography imaging; Tauopathies.
Copyright © 2020 Elsevier Masson SAS. All rights reserved.