The therapeutic potential of human mesenchymal stromal cells (h-MSC) is dependent on the viability and secretory capacity of cells both modulated by the culture environment. Our previous studies introduced heparin and collagen I (HEP/COL) alternating stacked layers as a potential substrate to enhance the secretion of immunosuppressive factors of h-MSCs. Herein, we examined the impact of HEP/COL multilayers on the growth, morphology, and secretome of bone marrow and adipose-derived h-MSCs. The physicochemical properties and stability of the HEP/COL coatings were confirmed at 0 and 30 days. Cell growth was examined using cell culture media supplemented with 2 and 10% serum for 5 days. Results showed that HEP/COL multilayers supported h-MSC growth in 2% serum at levels equivalent to 10% serum. COL and HEP as single component coatings had limited impact on cell growth. Senescent studies performed over three sequential passages showed that HEP/COL multilayers did not impair the replicative capacity of h-MSCs. Examination of 27 cytokines showed significant enhancements in eight factors, including intracellular indoleamine 2, 3-dioxygenase, on HEP/COL multilayers when stimulated with interferon-gamma (IFN-γ). Image-based analysis of cell micrographs showed that serum influences h-MSC morphology; however, HEP-ended multilayers generated distinct morphological changes in response to IFN-γ, suggesting an optical detectable assessment of h-MSCs immunosuppressive potency. This study supports HEP/COL multilayers as a culture substrate for undifferentiated h-MSCs cultured in reduced serum conditions.
Keywords: IDO; IFN-γ; collagen type I; heparin; human mesenchymal stromal cells; layer-by-layer.
© 2020 Wiley Periodicals LLC.