Highly Compressible, Thermally Stable, Light-Weight, and Robust Aramid Nanofibers/Ti3AlC2 MXene Composite Aerogel for Sensitive Pressure Sensor

ACS Nano. 2020 Aug 25;14(8):10633-10647. doi: 10.1021/acsnano.0c04888. Epub 2020 Aug 13.

Abstract

Various wearable aerogel sensors are emerging for their light weight, fairly wide sensing range, and sensitive sensing ability. Aramid nanofibers (ANFs) as a kind of burgeoning building blocks realize multifunctional applications in diversified fields for their innate extinguished mechanical property and thermal stability. Limited by their high insulating property, in this work ANFs were designed to integrate with a 2D emerging MXene sheet with a distinct conductive property. Herein, we report an MXene/ANFs composite aerogel through a feasible controllable vacuum filtration followed by a freeze-drying process. Benefiting from the inerratic 3D hierarchical and "mortar-brick" porous structure with an ultralow density of 25 mg/cm3, MXene/ANFs aerogels are proved to possess high compressible resilience and appealing sensing performance up to 1000 times. Importantly, verified by a series of simulation experiments, the MXene/ANFs aerogel sensor shows a wide detection range (2.0-80.0% compression strain), sensitive sensing property (128 kPa-1), and ultralow detection limit (100 Pa), which still play a flexible role in detecting human light movement and even vigorous sports after undergoing ultrahigh devastating pressures (∼623 kPa). In addition, the MXene/ANFs aerogel sensor can withstand a harsh high temperature of 200 °C and shows excellent flame resistance. The MXene/ANFs aerogel with excellent integrated property, especially the highly sensitive sensing property and excellent thermal stability, presents great potential for a human behavior monitoring sensor and sensing under certain extreme conditions.

Keywords: MXene; aramid nanofibers (ANFs); composite aerogel; hierarchical porous structure; pressure sensor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Conductivity
  • Humans
  • Monitoring, Physiologic
  • Nanofibers*
  • Porosity
  • Titanium

Substances

  • Titanium