Functional ultrasound (fUS) is a new tool enabling the imaging of brain activity through the regional monitoring of cerebral blood volume (CBV) dynamics. This innovative technique has not yet demonstrated its full potential in pharmacological applications and drug development. In the current proof-of-concept study, the impact of atomoxetine (ATX), a potent norepinephrine reuptake inhibitor and non-stimulant treatment marketed in attention-deficit/hyperactivity-disorder, was evaluated in anesthetized rat using pharmacological functional ultrasound (pharmaco-fUS) at increasing doses (0.3, 1 and 3 mg/kg). Using regions of interest (acute changes of CBV and functional connectivity) or pixel-based (general linear modeling and independent component analysis) analysis, we here demonstrated that ATX consistently displayed a hemodynamic effect in the visual cortex, the dentate gyrus and thalamus, especially visual areas such as lateral posterior thalamic nuclei and lateral geniculate nuclei (LGN). The time profile of ATX effects was dose-dependent, with fastest CBV increases at the highest dose, and longer CBV increases at the intermediate dose. Standardizing the use of pharmaco-fUS could improve our understanding of the mechanism of action of drugs active in the brain and might constitute a new step to move forward in drug development for neurological disorders.
Keywords: Atomoxetine; Functional ultrasound imaging; Pharmaco-fUS.
Copyright © 2020 Elsevier Ltd. All rights reserved.