Mn4+-Substituted Li-Rich Li1.2Mn0.43+Mn x4+Ti0.4- xO2 Materials with High Energy Density

ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40347-40354. doi: 10.1021/acsami.0c11544. Epub 2020 Aug 25.

Abstract

In this work, Li-rich Li1.2Mn0.43+Mnx4+Ti0.4-xO2 (LMMxTO, 0 ≤ x ≤ 0.4) oxides have been studied for the first time. X-ray diffraction (XRD) patterns show a cation-disordered rocksalt structure when x ranges from 0 to 0.2. After Mn4+ substitution, LMM0.2TO delivers a high specific capacity of 322 mAh g-1 at room temperature (30 °C, 30 mA g-1) and even 352 mAh g-1 (45 °C, 30 mA g-1) with an energy density of 1041 Wh kg-1. The reason for such a high capacity of LMM0.2TO is ascribed to the increase of both cationic (Mn) and anionic (O) redox after Mn4+ substitution, which is proved by dQ/dV curves, X-ray absorption near edge structure, DFT calculations, and in situ XRD results. In addition, the roles of Mn3+ and Ti4+ in LMM0.2TO are also discussed in detail. A ternary phase diagram is established to comprehend and further optimize the earth-abundant Mn3+-Mn4+-Ti4+ system. This work gives an innovative strategy to improve the energy density, broadening the ideas of designing Li-rich materials with better performance.

Keywords: Li-rich; cathode; cation-disordered materials; high energy density; oxygen redox.