Post-translational formation of strained cyclophanes in bacteria

Nat Chem. 2020 Nov;12(11):1042-1053. doi: 10.1038/s41557-020-0519-z. Epub 2020 Aug 17.

Abstract

Cyclic peptide natural products have served as important drug molecules, with several examples used clinically. Enzymatic or chemical macrocyclization is the key transformation for constructing these chemotypes. Methods to generate new and diverse cyclic peptide scaffolds enabling the modular and predictable synthesis of peptide libraries are desirable in drug discovery platforms. Here we identify a suite of post-translational modifying enzymes from bacteria that install single or multiple strained cyclophane macrocycles. The crosslinking occurs on three-residue motifs that include tryptophan or phenylalanine to form indole- or phenyl-bridged cyclophanes. The macrocycles display restricted rotation of the aromatic ring and induce planar chirality in the asymmetric indole bridge. The biosynthetic gene clusters originate from a broad range of bacteria derived from marine, terrestrial and human microbiomes. Three-residue cyclophane-forming enzymes define a new and significant natural product family and occupy a distinct region in sequence-function space.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / enzymology
  • Biological Products
  • Ethers, Cyclic / chemistry*
  • Ethers, Cyclic / metabolism*
  • Indoles
  • Peptides, Cyclic / chemistry
  • Phenylalanine / chemistry
  • Protein Processing, Post-Translational / physiology*
  • Proteomics
  • Tryptophan / chemistry

Substances

  • Biological Products
  • Ethers, Cyclic
  • Indoles
  • Peptides, Cyclic
  • Phenylalanine
  • indole
  • Tryptophan