Background: The purpose of this review is to summarize our own experimental studies carried out over a 13-year period of time using the F98 rat glioma as model for high grade gliomas. We evaluated a binary chemo-radiotherapeutic modality that combines either cisplatin (CDDP) or carboplatin, administered intracerebrally (i.c.) by means of convection-enhanced delivery (CED) or osmotic pumps, in combination with either synchrotron or conventional X-irradiation.
Methods: F98 glioma cells were implanted stereotactically into the brains of syngeneic Fischer rats. Approximately 14 days later, either CDDP or carboplatin was administered i.c. by CED, followed 24 h later by radiotherapy using either a synchrotron or, subsequently, megavoltage linear accelerators (LINAC).
Results: CDDP was administered at a dose of 3 µg in 5 µL, followed 24 h later with an irradiation dose of 15 Gy or carboplatin at a dose of 20 µg in 10 µL, followed 24 h later with 3 fractions of 8 Gy each, at the source at the European Synchrotron Radiation Facility (ESRF). This resulted in a median survival time (MeST) > 180 days with 33% long term survivors (LTS) for CDDP and a MeST > 60 days with 8 to 22% LTS, for carboplatin. Subsequently it became apparent that comparable survival data could be obtained with megavoltage X-irradiation using a LINAC source. The best survival data were obtained with a dose of 72 µg of carboplatin administered by means of Alzet® osmotic pumps over 7 days. This resulted in a MeST of > 180 days, with 55% LTS. Histopathologic examination of all the brains of the surviving rats revealed no residual tumor cells or evidence of significant radiation related effects.
Conclusions: The results obtained using this combination therapy has, to the best of our knowledge, yielded the most promising survival data ever reported using the F98 glioma model.
Keywords: Brain tumors; Cis/Carboplatin; Convection-enhanced delivery; F98 glioma; Radiation therapy; Synchrotron radiation.