The Rad53CHK1/CHK2-Spt21NPAT and Tel1ATM axes couple glucose tolerance to histone dosage and subtelomeric silencing

Nat Commun. 2020 Aug 19;11(1):4154. doi: 10.1038/s41467-020-17961-4.

Abstract

The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53CHK1/CHK2 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21NPAT on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1ATM and Rpd3HDAC activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Ataxia Telangiectasia Mutated Proteins / genetics
  • Ataxia Telangiectasia Mutated Proteins / metabolism
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Checkpoint Kinase 2 / genetics
  • Checkpoint Kinase 2 / metabolism*
  • DNA Damage
  • DNA Repair
  • Gene Silencing
  • Glucose / metabolism*
  • Histone Deacetylases / genetics
  • Histone Deacetylases / metabolism
  • Histones / metabolism*
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Mutation
  • Phosphorylation
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Serine / genetics
  • Serine / metabolism
  • Telomere / genetics
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • Cell Cycle Proteins
  • Histones
  • Intracellular Signaling Peptides and Proteins
  • SPT21 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • Serine
  • Checkpoint Kinase 2
  • Ataxia Telangiectasia Mutated Proteins
  • Protein Serine-Threonine Kinases
  • TEL1 protein, S cerevisiae
  • RAD53 protein, S cerevisiae
  • RPD3 protein, S cerevisiae
  • Histone Deacetylases
  • Glucose