Bipartite tight spectral clustering (BiTSC) algorithm for identifying conserved gene co-clusters in two species

Bioinformatics. 2021 Jun 9;37(9):1225-1233. doi: 10.1093/bioinformatics/btaa741.

Abstract

Motivation: Gene clustering is a widely used technique that has enabled computational prediction of unknown gene functions within a species. However, it remains a challenge to refine gene function prediction by leveraging evolutionarily conserved genes in another species. This challenge calls for a new computational algorithm to identify gene co-clusters in two species, so that genes in each co-cluster exhibit similar expression levels in each species and strong conservation between the species.

Results: Here, we develop the bipartite tight spectral clustering (BiTSC) algorithm, which identifies gene co-clusters in two species based on gene orthology information and gene expression data. BiTSC novelly implements a formulation that encodes gene orthology as a bipartite network and gene expression data as node covariates. This formulation allows BiTSC to adopt and combine the advantages of multiple unsupervised learning techniques: kernel enhancement, bipartite spectral clustering, consensus clustering, tight clustering and hierarchical clustering. As a result, BiTSC is a flexible and robust algorithm capable of identifying informative gene co-clusters without forcing all genes into co-clusters. Another advantage of BiTSC is that it does not rely on any distributional assumptions. Beyond cross-species gene co-clustering, BiTSC also has wide applications as a general algorithm for identifying tight node co-clusters in any bipartite network with node covariates. We demonstrate the accuracy and robustness of BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC to identify conserved gene co-clusters of Drosophila melanogaster and Caenorhabditis elegans, and we perform a series of downstream analysis to both validate BiTSC and verify the biological significance of the identified co-clusters.

Availability and implementation: The Python package BiTSC is open-access and available at https://github.com/edensunyidan/BiTSC.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Animals
  • Cluster Analysis
  • Drosophila melanogaster*
  • Gene Expression
  • Gene Expression Profiling*